Evaluation of Ammonia as a Replacement for Water in Surface Condensers: Performance and Efficiency
DOI:
https://doi.org/10.22105/jeee.v1i1.29Keywords:
Alternative fluid, Condenser, Ammonia, Coolant, Surface, Flow rate, Phase changeAbstract
The present paper explores the possibility of replacing the water cooling stream with an ammonia stream in surface condensers. Considering the high enthalpy of phase change of ammonia, if the boiling process of ammonia replaces the water cooling process, then the required cooling for condensation can be provided at a smaller surface area and coolant flow rate. To this end, first, the ammonia flow in one tube of a sample surface condenser is modeled, and the heat transfer equations are solved for different inlet temperatures and flow rates. By repeating the solution with the tube length considered constant, the required inlet flow rate for one tube at different temperatures is obtained. Then, it computes the heat transferred from one tube, and by dividing the total heat needed for condensation of steam by the calculated heat, it obtains a relation for computing the total surface and flow rate required. The investigation results reveal that the ammonia flow rate required is considerably lower than that of water, and also, at low ammonia temperatures, the surface area required will be considerably low.
References
[1] Kia, S., Khanmohammadi, S., & Jahangiri, A. (2023). Experimental and numerical investigation on heat transfer and pressure drop of SiO2 and Al2O3 oil-based nanofluid characteristics through the different helical tubes under constant heat fluxes. International journal of thermal sciences, 185, 108082. DOI:10.1016/j.ijthermalsci.2022.108082
[2] Kia, S. M., Nejati jahromi, M., & Isvand, H. (2022). Numerical simulation and experimental evaluation of an unsteady flow around forced rotating cylindrical prototype with three orthogonal plates. Modares mechanical engineering, 22(11), 637-646. (In Persian). DOI:10.52547/mme.22.11.637
[3] Ashrafi, N., & Sadeghi, A. (2018). Numerical simulation of visco-plastic fluid flow between two parallel plates with triangular obstacles. Bulletin of the American physical society, 63. https://meetings.aps.org/Meeting/DFD18/Event/334178
[4] Ashrafi, N., & Kia, S. M. (2018). Numerical simulation of an unsteady flow over a circular cylinder at high Reynolds numbers. Bulletin of the American physical society, 63. https://meetings.aps.org/Meeting/DFD18/Session/D32.9
[5] Kia, S. M., & Talebi, F. (2018). Numerical investigation of unsteady flow around a circular cylinderat different reynolds number. The 26th annual international conference of the Iranian society of mechanical engineers, Semnan, Iran. Civilica. (In Persian). https://civilica.com/doc/1134380/
[6] Kia, S. M., Nobakhti, M. H., & Khayat, M. (2020). Experimental investigation on heat transfer and pressure drop of Al2O3-base oil nanofluid in a helically coiled tube and effect of turbulator on the thermal performance of shell and tube heat exchanger. Journal of energy conversion, 7(3), 61-80. (In Persian). http://jeed.dezful.iau.ir/article-1-327-en.html
[7] Ikpe, A. E., Ekanem, I., & Ekanem, K. R. (2024). Conventional trends on carbon capture and storage in the 21st century: a framework for environmental sustainability. Journal of environmental engineering and energy, 1(1), 1–15.
[8] Wilson, E. (2024). Temperature effects on the corrosion inhibition of mild steel in crude oil medium by methanolic extract of Persea Americana ( Avocado tree ). Journal of environmental engineering and energy, 1(1), 16–23.
[9] Mori, Y., Hijikata, K., Hirasawa, S., & Nakayama, W. (1981). Optimized performance of condensers with outside condensing surfaces. ASME journal of heat and mass transfer, 103(1), 96–102. https://doi.org/10.1115/1.3244439
[10] Rabas, T. J., & Schaefer, R. J. (1993). Evaluation of enhanced tubes for power plant condensers. ASME journal of heat transfer, 115(2), 315–322.
[11] Zeng, H., Meng, J., & Li, Z. (2012). Numerical study of a power plant condenser tube arrangement. Applied thermal engineering, 40, 294–303. DOI:10.1016/j.applthermaleng.2012.02.028
[12] Yau, K. K., Cooper, J. R., & Rose, J. W. (1985). Effect of fin spacing on the performance of horizontal integral-fin condenser tubes. ASME journal of heat and mass transfer, 107(2), 377–386. https://doi.org/10.1115/1.3247425
[13] Zubair, S. M., Kadaba, P. V, & Evans, R. B. (1987). Second-law-based thermoeconomic optimization of two-phase heat exchangers. ASME journal of heat and mass transfer, 109(2), 287–294. https://doi.org/10.1115/1.3248078
[14] Mehrpooya, M., Dehghani, H., & Ali Moosavian, S. M. (2016). Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system. Journal of power sources, 306, 107–123. DOI:10.1016/j.jpowsour.2015.11.103
[15] Saedi, A., Jahangiri, A., Ameri, M., & Asadi, F. (2022). Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating. Energy, 260, 125065. DOI:10.1016/j.energy.2022.125065
[16] Ubabuike, U. H., Ime, J. U., Anosike, A. C., & Wilson, E. O. (2024). Comparative performance study of kolanut biodiesel and conventional fossil diesel. Journal of environmental engineering and energy, 1(1), 24–31.
[17] Khalil, M., Gunlazuardi, J., Ivandini, T. A., & Umar, A. (2019). Photocatalytic conversion of CO2 using earth-abundant catalysts: a review on mechanism and catalytic performance. Renewable and sustainable energy reviews, 113, 109246. DOI:10.1016/j.rser.2019.109246
[18] Zhang, Y., Park, C., Kim, N. H., & Haftka, R. T. (2017). Function prediction at one inaccessible point using converging lines. Journal of mechanical design, 139(5), 51402. DOI:10.1115/1.4036130
[19] Sreenath, S., Sudhakar, K., Yusop, A. F., Solomin, E., & Kirpichnikova, I. M. (2020). Solar PV energy system in Malaysian airport: glare analysis, general design and performance assessment. Energy reports, 6, 698–712. DOI:10.1016/j.egyr.2020.03.015
[20] Sun, Y., Tang, B., Huang, W., Wang, S., Wang, Z., Wang, X., … & Tao, C. (2016). Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Applied thermal engineering, 103, 892–900. DOI:10.1016/j.applthermaleng.2016.05.005
[21] Dammak, K., & El Hami, A. (2021). Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink. International journal of heat and mass transfer, 166, 120745. DOI:10.1016/j.ijheatmasstransfer.2020.120745
[22] Adebayo, T. S., Agyekum, E. B., Kamel, S., Zawbaa, H. M., & Altuntaş, M. (2022). Drivers of environmental degradation in Turkey: designing an SDG framework through advanced quantile approaches. Energy reports, 8, 2008–2021. DOI:10.1016/j.egyr.2022.01.020
[23] Mohammad Rozali, N. E., Ho, W. S., Wan Alwi, S. R., Manan, Z. A., Klemeš, J. J., & Cheong, J. S. (2019). Probability-Power Pinch Analysis targeting approach for diesel/biodiesel plant integration into hybrid power systems. Energy, 187, 115913. DOI:10.1016/j.energy.2019.115913
[24] Feldgun, V. R., & Yankelevsky, D. Z. (2020). The non-stationary dynamic analytical solution of a spherical/cylindrical cavity expansion. Journal of applied mechanics, transactions asme, 87(11), 111006. DOI:10.1115/1.4048040
[25] Jahangiri, A., Ameri, M., Arshizadeh, S., & Alvari, Y. (2023). District heating and cooling for building energy flexibility. In Building energy flexibility and demand management (pp. 173–190). Elsevier. DOI: 10.1016/B978-0-323-99588-7.00008-0
[26] Arshizadeh, S., Khanmohammadi, S., Jahangiri, A., Sajedi, S. M. H., Panchal, H., Prakash, C., & Gupta, N. K. (2024). Thermodynamic modeling and multi-objective optimization of an operating double-effect absorption chiller driven by photovoltaic panel: a case study. Journal of environmental engineering and energy, 1(1), 32–46. https://jeee.reapress.com/journal/article/view/22
[27] Alihosseini, N., Jahangiri, A., & Ameri, M. (2024). Energy, exergy, exergoeconomic, and exergoenvironmental analyses and multi-objective optimization of parallel two-stage compression on the domestic refrigerator-freezer. International journal of air-conditioning and refrigeration, 32(1), 1–15. DOI:10.1007/s44189-024-00054-y
[28] Jahangiri, A., Ebrahim Sarbandi Farahani, M., Ahmadi, G., Shahsavar, A., Borzouei, A., & Gharehbaei, H. (2022). Coupled CFD and 3E (energy, exergy and economical) analysis of using windbreak walls in heller type cooling towers. Journal of cleaner production, 358, 131550. DOI:10.1016/j.jclepro.2022.131550
[29] Mardan Dezfouli, A. H., Arshizadeh, S., Nikjah Bakhshayesh, M., Jahangiri, A., & Ahrari, S. (2024). The 4E emergy-based analysis of a novel multi-generation geothermal cycle using LNG cold energy recovery. Renewable energy, 223, 120084. DOI:10.1016/j.renene.2024.120084
[30] Ahmadi, G., Jahangiri, A., & Toghraie, D. (2023). Design of heat recovery steam generator (HRSG) and selection of gas turbine based on energy, exergy, exergoeconomic, and exergo-environmental prospects. Process safety and environmental protection, 172, 353–368. DOI:10.1016/j.psep.2023.02.025
[31] Hosseinizadeh, S. E., Majidi, S., Goharkhah, M., & Jahangiri, A. (2021). Energy and exergy analysis of ferrofluid flow in a triple tube heat exchanger under the influence of an external magnetic field. Thermal science and engineering progress, 25, 101019. DOI:10.1016/j.tsep.2021.101019
[32] Jahangiri, A., Yahyaabadi, M. M., & Sharif, A. (2019). Exergy and economic analysis of using the flue gas injection system of a combined cycle power plant into the Heller Tower to improve the power plant performance. Journal of cleaner production, 233, 695–710. DOI:10.1016/j.jclepro.2019.06.077
[33] Shahsavar, A., Jahangiri, A., Qatarani nejad, A., Ahmadi, G., & Karamzadeh dizaji, A. (2022). Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations. Renewable energy, 196, 1017–1028. DOI:10.1016/j.renene.2022.07.057